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Abstract
It has been found that differentiable functions can locally oscillate on length
scales that are much smaller than the smallest wavelength contained in
their Fourier spectrum—a phenomenon called superoscillation. Here, we
consider the case of superoscillations in quantum mechanical wavefunctions.
We find that superoscillations in wavefunctions lead to unusual phenomena
that are of measurement theoretic, thermodynamic and information theoretic
interest. We explicitly determine the wavefunctions with the most pronounced
superoscillations, together with their scaling behaviour. We also briefly
address the question of how superoscillating wavefunctions might be produced
experimentally.

PACS numbers: 03.65.Ta, 03.67.−a, 02.30.Nw

Introduction

Let us consider the set of differentiable functions whose Fourier transforms show only
wavelengths that are larger than some finite minimum wavelength λmin. Intuitively, one may
expect that none of these functions oscillates on length scales that are significantly smaller
than λmin. In fact, however, it has been found that this set contains functions which locally
oscillate with wavelengths that are arbitrarily smaller than λmin. The phenomenon is known
as superoscillation and examples have been discussed in various contexts, from evanescent
waves and seeming superluminal propagation to the trans-Planckian problem of black holes,
see [1–7]. In the field of information theory, see e.g. [8, 9], the phenomenon of superoscillating
signals was first observed in [10].

Our aim here is to describe and analyse phenomena that arise when quantum mechanical
wavefunctions superoscillate. In particular, we will show that particles of low momentum pick
up large momenta when passing through a slit, if the part of their wavefunction which passes
through the slit is superoscillating. As we will explain, this phenomenon has implications
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that are of measurement theoretic, thermodynamic and information theoretic interest. It
will be challenging, however, to observe these effects experimentally. This is because
superoscillations come at a cost: it is known that superoscillations tend to come with a
relatively small amplitude.

It is, therefore, of both theoretical and practical interest to be able to calculate that
wavefunction which superoscillates with the maximally possible amplitude at any pre-specified
wavelength in any pre-specified interval. Here, we build on mathematical methods of
[7, 10, 11] to solve this problem. In particular, we will calculate how this maximal amplitude
scales when considering functions that superoscillate at higher and higher frequencies or
for longer and longer intervals. We will show that the maximally possible amplitude of the
most pronounced superoscillations in normalized wavefunctions decreases polynomially when
increasing the frequency and decreases exponentially when increasing the total duration of
the superoscillations. With the latter case we will thereby prove a conjecture of Berry [2, 3].
We will also find that this scaling behaviour possesses an information theoretic interpretation.
Finally, we will speculate on a method by which, in principle, superoscillating wavefunctions
might be produced experimentally.

Superoscillations

Throughout, we will consider the set of wavefunctions with momentum cutoff pmax:

ψ(x) = 1√
2πh̄

∫ pmax

−pmax

ψ̃(p) e
ixp
h̄ dp. (1)

Note that each such ψ is differentiable. These wavefunctions are linear combinations of plane
waves whose wavelengths are at least as large as λmin = h/pmax. Among those wavefunctions
are wavefunctions that oscillate arbitrarily quickly on arbitrarily long stretches, see [1–3]. To
be precise, as was shown in [7], for any N arbitrarily chosen points {xk}Nk=1 and arbitrarily
chosen amplitudes {ak}Nk=1 there exist square integrable and differentiable wavefunctions ψ

which at the prescribed points take the prescribed amplitudes

ψ(xk) = ak, for all k = 1, 2, . . . , N (2)

while also obeying the momentum cutoff expressed in equation (1). In particular, we can
choose the spacing of the points {xk} small compared to the minimum wavelength,

xk+1 − xk � λmin for all k (3)

while choosing, for example, amplitudes ak with alternating signs (and arbitrary moduli
|ak|). The wavefunctions ψ , which are guaranteed to exist by the results of [7], then contain
superoscillations, in the sense that they locally oscillate faster than the shortest wavelength
λmin that is contained in the wavefunction’s Fourier decomposition.

Intuitively, the reason why superoscillations do not show as high frequencies in the
Fourier transform is that there are subtle cancellations in the Fourier integration over all of
the wavefunction, i.e. over both its superoscillating and non-superoscillating parts. In fact,
it has been observed that functions that superoscillate in a given interval tend to possess
some exceedingly large amplitudes immediately to the left and right of that interval, see
[2, 3]. Roughly speaking, for those cancellations in the Fourier transform to take place the
amplitudes in the interval with superoscillations must be small compared to amplitudes in
the non-superoscillatory part of the function. Since quantum mechanical wavefunctions need
to be normalized this means that if they contain any superoscillations these superoscillations
can only be of small amplitude. It appears that the ‘cost’ for having superoscillations in a
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wavefunction is the suppression of the probability for finding the particle in a region in which
its wavefunction superoscillates.

The magnitude of this cost is not only of theoretical interest. It is also of significance to
the question of how experiments with superoscillatory wavefunctions could be performed. In
the next section, therefore, we will explicitly calculate for any given set of points {(xk, ak)} that
momentum-limited wavefunction ψ which passes though {(xk, ak)} with the lowest cost, i.e.
we calculate among all momentum-limited wavefunctions which pass through {(xk, ak)} that
wavefunction whose superoscillatory amplitudes after normalization are as large as possible.

Further, this ‘cost’ of superoscillations clearly also depends on the choice of points
{(xk, ak)}. We will calculate this dependence in the later section ‘Scaling behaviour’. For
example, assume we choose points {xk} whose spacing is small compared to λmin. This
alone does not guarantee superoscillations since we may choose, e.g. all ak = 1 and there
would be no cost. If, however, we choose, for example, any set of amplitudes {ak} that are
alternatingly positive and negative then we are considering superoscillatory wavefunctions.
Their minimum cost (i.e. maximum superoscillation amplitude after normalization) depends
on the moduli |ak| that one has chosen. In the section ‘Scaling behaviour’ we will calculate
for each fixed set {xk} that choice of amplitudes {ak} for which this minimum cost is highest,
i.e. the choice of {ak} which yields the superoscillations that are most pronounced, in the sense
that they are the most difficult to create given the momentum limitation. Intuitively, they are
those superoscillations which require the most subtle cancellations in the Fourier transform.
(As we will explain below, there is no least-superoscillatory function, i.e. there is no choice
of amplitudes {ak} for which the minimum cost would be smallest.) We will examine the
scaling of the minimum cost of those most pronounced superoscillations as one either chooses
the points xk closer together or as one increases the overall number, N, of points, i.e. as one
increases the frequency or the duration of the superoscillations.

Superoscillations of maximal amplitude

Throughout this section, we assume that an arbitrary set of points {(xk, ak)} has been fixed.
Our aim is to explicitly calculate the ‘cheapest’ wavefunction which passes through the points
{(xk, ak)} while being momentum-limited by equation (1). To be precise, [7] guarantees that
there are wavefunctions ψ which pass through the points (xk, ak) while being momentum-
limited by equation (1) but they are generally not normalized. After normalization, the
wavelength of their superoscillations will be unchanged, of course, but the prescribed
amplitudes ak will change to the values bk = ak/‖ψ‖. Clearly, the momentum-limited
wavefunction ψ which passes through the specified points (xk, ak) while possessing the
smallest norm ‖ψ‖ will possess the largest amplitudes |bk| after normalization, i.e. it comes
with the lowest ‘cost’ in our terminology of above. Our goal is to explicitly calculate this
wavefunction.

The strategy will be, first, to calculate that wavefunction ψ of the form of equation (1)
which obeys the constraints of equations (2) while possessing the smallest norm. We use a
variational principle for this purpose. Second, we normalize this wavefunction by dividing it
by its norm. Having minimized the norm of ψ ensures that after the normalization of ψ the
amplitudes {bk} of the normalized wavefunction’s superoscillations are maximal. (Note that
this does not mean that we require the points {(xk, ak)} or {(xk, bk)} to be local extrema.)

Explicitly, we minimize the norm
∫ ∞
−∞ ψ∗(x)ψ(x) dx = ∫ pmax

−pmax
ψ̃∗(p)ψ̃(p) dp of the

wavefunction ψ , subject to the constraints of equation (2), which can also be written as
1√
2πh̄

∫ pmax

−pmax

ψ̃(p) e
ixkp

h̄ dp = ak. (4)
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Thus, with Lagrange multipliers µr , the Lagrangian of the variational problem reads

L =
∫ pmax

−pmax

ψ̃∗(p)ψ̃(p) dp +
N∑

r=1

µr√
2πh̄

∫ pmax

−pmax

ψ̃(p) e
ixr p

h̄ dp + c.c.,

from which we obtain

ψ̃(p) +
N∑

r=1

µ∗
r√

2πh̄
e

−ixr p

h̄ = 0. (5)

Using equation (4), we have, therefore:

−1

2πh̄

N∑
r=1

µ∗
r

∫ pmax

−pmax

e
ip
h̄

(xk−xr ) dp = ak. (6)

We define the symmetric matrix {Sk,r}Nk,r=1 through

Sk,r = 1

2πh̄

∫ pmax

−pmax

e
ip
h̄

(xk−xr ) dp

= sin((xk − xr)pmax/h̄)

π(xk − xr)
. (7)

The matrix S is in fact invertible. To see this, note that it is positive definite:

N∑
r,k=1

v∗
r Sr,kvk = 1

2πh̄

∫ pmax

−pmax

∣∣∣∣∣
N∑

l=1

vl eipxl

∣∣∣∣∣
2

dp. (8)

Equation (6) now takes the form

−
N∑

r=1

Sk,rµ
∗
r = ak, (9)

and we can solve for the coefficients µ∗
r :

µ∗
r = −

N∑
m=1

S−1
r,mam. (10)

Using equation (5), we finally obtain the desired wavefunction in the momentum space
representation:

ψ̃(p) = 1√
2πh̄

N∑
r=1

N∑
m=1

S−1
r,mam e

−ixr p

h̄ . (11)

In the position representation, the superoscillating wavefunction reads

ψ(x) = 1

2πh̄

∫ pmax

−pmax

N∑
r=1

N∑
m=1

S−1
r,mam e

i(x−xr )p

h̄ dp

=
N∑

r,m=1

S−1
r,mam

sin((x − xr)pmax/h̄)

π(x − xr)
. (12)

We see that ψ is a delicate linear combination of shifted copies of the function sin(2πx/λmin)/x

each of which is of only slow variation. Among all wavefunctions which obey equation (1)
and which take the prescribed amplitudes ak at the N prescribed positions xk , the wavefunction
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given in equation (12) possesses the smallest norm. Thus, the normalized wavefunction
ψ(n) = 1

‖ψ‖ψ superoscillates with the largest achievable amplitudes:

ψ(n)(xk) = ak

‖ψ‖ , for all k = 1, . . . , N. (13)

In other words, among all normalized wavefunctions obeying the momentum cutoff of
equation (1) and passing through the points (xk, cak) for some positive c, the wavefunction
ψ(n) possesses the largest possible c.

Acceleration through a single slit

Consider a low-momentum particle which passes through a slit in a screen. The particle’s
position in the direction parallel to the screen thereby becomes determined to within the
width L of the slit. By the uncertainty principle, this implies that the particle’s momentum
�p parallel to the screen becomes uncertain, such as to obey �p � h̄

L
. Thus, as is well

known, a particle may acquire momentum when passing through a narrow slit. We can now
see, however, that the uncertainty principle is not the only reason why particles can acquire
momentum when passing through a slit.

Namely, consider an incident low-momentum particle whose wavefunction in the direction
parallel to the screen possesses spatial superoscillations just where the wavefunction meets the
slit in the screen. In this case, the wavefunction which emerges from the slit is spatially
oscillating with the very short wavelength of the superoscillations where the slit is, and is zero
elsewhere. The emerging wavefunction’s rapid oscillations now do show as high frequencies
in its Fourier transform. This is because the emerging wave no longer possesses the high-
amplitude non-superoscillating parts which cancelled the high frequencies’ occurrence in
the incident wave’s Fourier transform. Thus, the emerging quantum particle acquires a
correspondingly high momentum expectation value.

Note that since the superoscillating stretch of the particle’s wavefunction can be made
arbitrarily wide the slit need not be narrow. In addition, we know that the wavelength of the
superoscillations in the slit interval can be made arbitrarily short. It is possible, therefore,
to arrange the momentum uncertainty of the emerging particles to be small, i.e. close to the
lower bound h/L, while their acquired momentum expectation value can be chosen arbitrarily
larger than h/L. Explicit examples of this are calculated in a follow-up paper [12].

Scaling behaviour

In the previous section, we referred to the fact that one can always find momentum-limited
wavefunctions which superoscillate on an arbitrarily large interval with arbitrarily short
wavelength. Let us now consider the associated cost. The cost is, of course, that even the
superoscillations of maximal amplitude that we calculated above will be of smaller and smaller
amplitude when we increase the frequency and/or the number of required superoscillations.
In order to find this scaling behaviour we need to calculate the maximum amplitude of
superoscillations in normalized wavefunctions as a function of the choice of points {(xk, ak)}.

We already mentioned that it had been observed that the more superoscillations one
requires, the larger the amplitudes immediately to the left and right of the interval with
superoscillations tend to be. Berry, see [2], conjectured that this ‘cost’ generally scales
exponentially with the length of the interval in which a function is superoscillating.

Quantum mechanical wavefunctions, in particular, need to be normalized, i.e. if the
wavefunction ψ passes through prescribed points {(xk, ak)} then the normalized wavefunction
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ψ(n) passes through the points {(xk, ak/‖ψ‖)}. Berry’s conjecture thus translates into the
statement that the maximum amplitudes bk of superoscillations which occur in normalized
wavefunctions should decrease exponentially when requiring a larger and larger number of
superoscillations.

We will determine the exact scaling behaviour of the norm ‖ψ‖ with respect to not only the
duration, but also with respect to the wavelength of the prescribed superoscillations, i.e. with
respect to the choice of points {(xk, ak)}. Recall that ψ is here that wavefunction which passes
through a given set {(xk, ak)} while possessing the minimum possible norm. It is of course
given by equation (12) and it is the wavefunction of the maximum possible superoscillatory
amplitudes bk after normalization. Now in order to determine the scaling behaviour of the
norm ‖ψ‖ note that, from equation (5), the norm obeys

‖ψ‖2 = 1

2πh̄

∫ pmax

−pmax

∣∣∣∣∣
N∑

r=1

µ∗
r e

−ixr p

h̄

∣∣∣∣∣
2

dp

=
N∑

k,r=1

µ∗
r µk

2πh̄

∫ pmax

−pmax

e
i(xk−xr )p

h̄ dp

= �µ†S �µ.

We used vector notation: �µ = {µr}Nr=1. Using equation (10), we obtain

‖ψ‖2 = �a†S−1�a. (14)

Equation (14) expresses the smallest norm of any momentum-limited wavefunction ψ which
passes through the prescribed points {(xk, ak)} for k = 1, 2, . . . , N . We will be interested
in how that norm increases when increasing the superoscillations’ frequency or duration, i.e.
when choosing the xk closer to another or when increasing the number N of prescribed points.

First, however, we need to choose the values {ak}. We can choose them to be oscillating in
various ways, or even not oscillating at all—with the associated cost, i.e. the minimum norm
‖ψ‖, being correspondingly larger for some choices and smaller for other choices of the {ak}.
For example, if the distance between successive xk is smaller than h/pmax then one choice
which is sure to give us superoscillations is to choose alternating amplitudes ak = (−1)k .
We expect this choice to come with some considerable cost. Interestingly, this is in general
not the most norm-expensive choice, i.e. in this sense it is generally not the most pronounced
superoscillatory choice. For any given set {xk} there are generally other choices of amplitudes
{ak} for which more fine-tuning is required to pass a momentum-limited wavefunction through
the points {(xk, ak)}.

To see this note that, from equation (14), it is most norm expensive to choose the
set {ak} such that when read as a vector, �a, it is an eigenvector of the symmetric matrix
S−1 with the largest eigenvalue. Numerically, we find that the coefficients ak of those
eigenvectors tend to be of alternating sign with moduli |ak| that are small for k close to
1 and N and large for intermediate values of k, much like a wave packet. For example,
let us consider the case where the minimum wavelength is ten units long, λmin = 10,
while we specify, say, N = 6 amplitudes at unit spacing: xk = k for k = 1, 2, . . . , 6.
The smallest eigenvalue of the matrix S is then smin = 3.83 × 10−8 and the corresponding
eigenvector is �a = (0.07,−0.33, 0.62,−0.62, 0.33,−0.07), here given to three significant
digits of precision. Intuitively, this means that while it always requires fine-tuning to have
a momentum-limited wavefunction oscillate faster than the minimum wavelength h/pmax in
some interval, it requires the most fine-tuning to have a momentum-limited wavefunction
which does this while possessing also the envelope of a wave packet in that interval.
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We will call those wavefunctions the wavefunctions with the most pronounced
superoscillations. Our aim is to calculate the scaling behaviour of their cost, i.e. of their
norm. Recall that this means that we aim to calculate how fast the maximum amplitude of
superoscillations in normalized wavefunctions decreases as we increase N or place the xk

closer together—while in each case choosing the amplitudes {ak} so as to obtain the most
pronounced (i.e. most difficult to achieve) superoscillations. Of course, wavefunctions with
less pronounced superoscillations or no superoscillations come cheaper. Note, however, that
there is no cheapest superoscillatory wavefunction that we could consider, i.e. there is no
choice of amplitudes {ak} for which the minimum cost of superoscillations is the smallest.
This is because one can always lower the minimum cost by choosing sets of amplitudes
{ak} that are less and less superoscillatory—until one obtains normal-oscillatory behaviour at
no cost.

Our aim now is to calculate the scaling behaviour of those in this sense most pronounced
superoscillating wavefunctions and prove Berry’s conjecture in this case. We know already
that these wavefunctions are obtained when �a is chosen to be an eigenvector of the symmetric
matrix S with the smallest eigenvalue, smin. That wavefunction ψ which possesses the maximal
amplitudes after normalization then superoscillates, as ψ(n), with the amplitudes:

ψ(n)(xk) = s1/2
min

ak

‖�a‖ . (15)

For simplicity, let us prescribe the superoscillating amplitudes at equidistant points xk with
spacing �x, namely xk = k�x for k = 0, . . . , (N−1). In this way, we obtain a matrix S which
is of the form of a so-called prolate matrix. We can benefit from the fact that the eigenvalues
of prolate matrices were studied in [11]: the definition of the prolate matrix ρ(N,W) in
equation (21) of [11] matches ours through Sr,k = ρr,k(N,W(�x))/�x with W(�x) =
�xpmax/h.

We can now use equation (64) of [11] to obtain the scaling of smin, and thus of the
bk = ψ(n)(xk), for fixed N and decreasing spacing �x:

ψ(n)(xk) ∝ s1/2
min ∝ (�x)N−1. (16)

Thus, if a fixed number N/2 of equidistant superoscillations is compressed into a smaller
region, i.e. if the superoscillations’ wavelength 2�x is reduced, then the amplitude of
the most pronounced superoscillations decreases polynomially with the wavelength of the
superoscillations.

In the case where the superoscillation wavelength, i.e. the spacing �x, is held fixed and
the number N of superoscillations is increased, we can use equations (13), (58) from [11] to
readily find the scaling behaviour of the smallest eigenvalue smin of S for large N, to obtain

ψ(n)(xk) ∝ s1/2
min ∝ N1/4 e−γN/2. (17)

Here, γ is positive and depends on �x but not on N. Thus, we proved that the amplitude
of the most pronounced superoscillations indeed decreases exponentially with the number of
superoscillations, i.e. with the length of the superoscillating stretch.

Note that while these scaling results imply exceedingly small superoscillation amplitudes
bk for the incident wavefunction it is clear that whenever the particle with the superoscillating
stretch of its wavefunction does pass through the slit, then the emerging superoscillations’
amplitudes are boosted up to order one through the renormalization of the collapsed
wavefunction.
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Open questions

The phenomenon of superoscillations raises a number of basic questions, which we here only
begin to address.

(1) Our finding that the superoscillations’ amplitude decreases exponentially with the
length of the superoscillating stretch possesses an information theoretic interpretation after
translation into the language of communication theory. Namely, instead of wavefunctions
with a finite momentum cutoff, let us consider the mathematically equivalent case of signals
with a finite bandwidth. We see that, by using superoscillating signals, it is in principle
possible to encode arbitrary amounts of information into any arbitrarily short interval of a
low-bandwidth signal. This signal is then able to pass through any channel of correspondingly
low bandwidth. Every channel has some level of noise, however, and this is where the cost
arises: as Shannon showed in [8], signals which pass through a channel of bandwidth ωmax

can deliver information at most at a rate ωmax log2(1 +S/N), where S/N is the signal-to-noise
ratio. Thus, superoscillatory information compression in signals is possible to an arbitrary
extent—but the associated cost is that the required signal power grows exponentially with
the length of the part of the message that is superoscillatory. For wavefunctions, this neatly
corresponds to our finding that the norm of maximally superoscillatory wavefunctions grows
exponentially with the number of prescribed superoscillations. It would be interesting to
analyse, analogously, the scaling behaviour and information theoretic interpretation of classes
of less than maximally superoscillatory wavefunctions but we will not pursue this here. It
should also be most interesting to generalize this result on the scaling of superoscillations to
the case of fields with finite information density in curved space, see [13].

(2) Normally, if the outcome of a conditional measurement can be predicted it is thought
to be consistent to assume that the particle possessed the property in question already before
the conditional measurement, at least with some probability. For example, let us consider the
case of a conditional momentum measurement: first we measure if the particle is in a specified
region of size L and if yes then we perform a momentum measurement. Assume the particle
is initially in a state so that it can be predicted that this conditional momentum measurement
will yield with high probability a momentum close to some specific large value ppred. Given
this information one might be tempted to assume that already in its initial state the particle
must have possessed such a large momentum ppred at least with some finite probability.

We have now seen, however, that this assumption is not justified: we can arrange a
realization of the above setup through a particle whose initial wavefunction is momentum-
limited by a value pmax obeying pmax < ppred and is superoscillating in the specified region at
the rate corresponding to ppred. In this case, we can predict that if the particle is found in the
specified region, and if then its momentum is measured, it will be found to possess a momentum
close to ppred. But we know also that before the position and momentum measurements the
particle had zero probability for the momentum ppred.

Of course, the phenomenon is entirely due to the momentum-changing effect of the
position measurement that determines whether or not the particle is in the specified region.
It is noteworthy, however, that the minimum amount of momentum uncertainty �p = h̄/L

introduced by the position measurement can be made arbitrarily small. This is because the
setup of above can be realized with the specified region being of arbitrarily large finite size L
since there is no limit to how large the superoscillating stretch of a wavefunction can be made.
This issue is further investigated in the follow-up paper [12] where concrete examples of such
initial wavefunctions are calculated.

(3) In the single slit setup of above, those superoscillating particles which do pass through
the slit will gain, with little uncertainty, arbitrarily predetermined amounts of momentum and
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energy. The energy picked up by those particles is available to do work because the particle’s
motion after the screen is largely in a predetermined direction. Due to momentum and energy
conservation, this gain must be balanced by a corresponding loss in the momentum and energy
of the screen. Thus, those particles are accelerated by strong interactions with the slit walls,
thereby in effect cooling the screen. It is not obvious and should be very interesting to explore
if, in an ensemble of experimental runs, this cooling of the screen is offset by the heating of
the screen due to the impact of those particles which miss the slit. Otherwise, consistency
with the second law of thermodynamics would appear to imply that it is necessarily entropy-
expensive to produce superoscillating wavefunctions.

(4) Further, the rate at which incident particles pass through the slit and thereby take energy
from the screen does not depend on the screen’s temperature. How, therefore is it ensured
that the screen always has sufficient energy and momentum available for those particles which
happen to pass through the slit? Although we do not prove this here, the answer should be
provided by the uncertainty relation applied to the position and momenta of the slit walls
themselves—analogous to Feynman’s explanation of the momentum balance in the double slit
experiment in [14]. Concretely, if the position of a cold screen is known sufficiently accurately
to ensure that it is the superoscillating part of incident wavefunctions which passes through
the slit, then by the uncertainty relation the screen possess sufficient momentum uncertainty to
be able to provide the required momentum to the superoscillating particles which pass through
the slit. Conversely, if the screen is known to possess very little momentum, then by the
uncertainty relation the position of the screen and its slit cannot be known with sufficient
precision to ensure for the emerging particles that it was the superoscillating part of their
wavefunction which passed through the slit.

(5) The question arises of how superoscillating wavefunctions might be produced
experimentally. For example, can we design a potential V (x) whose ground state has a
superoscillating stretch? One possibility might be to start with a harmonic oscillator potential
centred about x = 0. Its ground state’s momentum range is effectively cut off at high momenta
since it behaves as ∝e−kp2

. Let us add to the potential several relatively sharp spikes in close
proximity, close to x = 0. The ground state’s wavefunction should then become quickly
varying in the region where the spikes are, while also suppressed in amplitude. Whether this
would effectively constitute a superoscillatory ground state remains to be studied.
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